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ABSTRACT

An injection attack is a cyber-attack that is one of The Open Web Application Security 
Project Top 10 Vulnerabilities. These attacks take advantage of insufficient user input 
validation into the system through the input surface of a Web application as that user in the 
browser. The company’s cyber security team must filter thousands of attacks to prioritize 
which attacks are considered the most dangerous to be mitigated first. This activity of 
filtering thousands of attacks takes much time because you have to check these attacks one 
by one. Therefore, a method is needed to assess how dangerous a cyber-attack is that enters 
an organization’s or company’s server. Injection attack detection can be done by analyzing 
the request data in the web server log. Our research attempts to perform quantification 
modeling of the variations of two types of injection attacks, SQL Injection (SQLi) and 
Cross-Site Scripting (XSS), using Common Vulnerability Scoring System Metrics (CVSS). 
CVSS metrics are generally used to calculate the level of dangerous weakness in the system. 
This metric is never used to calculate the level of how dangerous an attack is. The modeling 
that we have made shows that SQLi and XSS attacks have many variations in levels ranging 

from low to high levels. We discovered that 
when classified with Common Weakness 
Enumeration Database, SQLi and XSS 
attacks CVE values would have high-level 
congruence with almost 94% value between 
one another vector on CVSS. 

Keywords: Common vulnerability scoring system, 
injection attack, metrics security risk level  
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INTRODUCTION

An injection attack on a website is one of the malicious hackers’ most executed attack 
vectors. When an injection attack is executed, the hacker will enter malicious input into 
an application or program. The interpreter or compiler will process this input to get the 
expected output from the injection attack, such as data theft, denial of service, loss of data 
integrity, or bypassing system authentication. Malicious hackers exploit flaws and errors 
in validating user input on input surfaces such as forms or URLs (Kindy & Pathan, 2011).

Retrieving hidden data is a type SQLi that can modify SQL Query to return expected 
additional data results. Subverting application logic is a type SQLi that changes the query 
to interfere with the application’s algorithm (Pramod et al., 2015). Aliero & Qureshi et al. 
(2020) conducted literature review research on SQL injection attacks published between 
2006 and 2019. Their research found that of 82 papers filtered from 1261 papers, 85.4% 
or 70 papers proposed SQLIA mitigation & prevention methods and tools, 8.5% or seven 
papers proposed experimental evaluation methods, and 6.1% or five papers proposed 
analytical methods. The results of the study literature review by them have not found any 
research on assessing the dangerous level of an SQL injection attack. UNION attacks are 
a type SQLi that can retrieve data from different database tables. Examining the database 
is a type SQLi that can extract the structure of database information. Blind SQL injection 
is a type SQLi that use to test whether a website is SQLi vulnerable or not through query 
response that shows in the application’s response (Aliero & Ghani, et al., 2020; Sadeghian 
et al., 2013). The malicious hacker usually executed SQLi attacks via automation tools 
such as NMAP (Alazmi & de Leon, 2022; Kieyzun et al., 2009).

Javascript code injection vulnerabilities have three variations: Reflected, Store, and 
Dom-based (Fogie et al., 2007). The Reflected type is an XSS vulnerability that originates 
from an HTTP request as a URL (Sarmah et al., 2018). Type Store is the type of XSS 
vulnerability coming from the JavaScript code that is deliberately inputted into the database 
by a malicious hacker with the purpose when the JavaScript code is read by the process of 
querying the database for display in the user interface web, executed during the process 
of web page loading and processing processes that malicious. The DOM-based type is 
an XSS attack that exploits JavaScript code that processes data from untrusted sources 
with insecure processing methods (Bisht & Venkatakrishnan, 2008). Several studies on 
detecting cross-site scripting vulnerabilities have been carried out on several types of cross-
site scripting vulnerabilities (Sarmah et al., 2018). According to Sarmah et al., research 
on cross-site scripting is divided into two approaches, namely client-side and server-side 
approaches. Several studies using a client-side approach have been carried out using the 
static analysis method, as many as 10 studies, and the hybrid analysis method, as many 
as four studies. While the number of studies using the server-side approach with the static 
analysis method is as many as 12 studies, the dynamic analysis method has as many 
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as nine studies, and the hybrid analysis method has as many as two studies. This study 
shows that research in the server-side approach area with the static analysis method is the 
most studied. Reflected XSS detection has been widely studied using regular expression 
and string-matching methods (Bates et al., 2010; Gupta & Gupta, 2016; Pelizzi & Sekar, 
2012; Rao et al., 2016; Wang & Zhou, 2016) (cite xx auditor, xss filt, no script, ie 2008, 
xss immune, xbuster, rule based). Meanwhile, for the detection of weaknesses in cross-site 
scripting types of DOM and Stored XSS, little research is done with string matching and 
string comparison.

Most injection attacks research only focuses on how to detect these injection attacks, 
filtering input as a defense mechanism, or also preventing the entry of injection attacks 
code by utilizing third-party software such as intrusion detection system (Bisht & 
Venkatakrishnan, 2008; Bozic & Wotawa, 2013; Gupta & Gupta, 2017; Kumar Singh & 
Roy, 2012). However, no research discusses how to assess the ability of malicious hackers 
to exploit injection vulnerabilities of the complexity of the injection attacks. Knowing 
the complexity of the attacks launched by these malicious hackers, the incident response 
team’s resources can be focused on attacks that can be considered dangerous to the system 
(Athanasopoulos et al., 2010).

Measuring cyber security in a company’s digital assets can help them define an 
organization’s security posture. Appropriate cyber security measures can help companies 
(1) verify whether their control security has complied with a policy, process, or procedure, 
(2) help identify strengths and weaknesses and findings of exploitation of the company’s 
digital assets, and (3) help identify trends in security, both in the internal and external 
environment of the organization (Voeller, 2008). Companies can monitor their cyber 
security and defense performance by keeping abreast of the latest cyber security trends. 
CVSS metrics help companies measure how big a weakness is in the system. In this study, 
we use CVSS metrics to measure how dangerous a cyber-attack is combined with NVD data.

The accuracy of the CVSS calculation score is influenced by the knowledge of 
the security researcher and its analysis. It contains an element of their subjectivity in 
determining each score of the CVSS variables. Security researchers worldwide will 
upload their calculations for every type of vulnerability they find in technology or system 
to organizations such as NVDs. NVD organizations use the Common Vulnerabilities and 
Exposures (CVE) standard for recording the uploaded weakness catalog (Aksu et al., 2018). 
NVD organizations modify CVE by providing a classification for each weakness known 
as Common Weakness Enumeration (CWE). This study uses CWE to classify weaknesses 
and insert some CWE values into the CVSS variables.

Several studies propose several uses of CVSS in certain cybersecurity fields. CVSS is 
used to analyze the risk of vulnerabilities in system assets as measured by the frequency 
and process of risk management and cybersecurity strategies in corporate and industrial 
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environments (Figueroa-Lorenzo et al., 2021; Houmb et al., 2010a). CVSS is also trying 
to be implemented to illustrate the graph of cyber-attacks (Gallon & Bascou, 2011a). The 
application of CVSS has also tried to be automated and use machine learning from the 
findings of weaknesses in the system (Beck & Rass, 2016; Elbaz et al., 2020; Minh Le 
et al., 2021; Radack & Kuhn, 2011). From a literature review study conducted regarding 
the application of CVSS, it was found that there was no CVSS automation application 
to measure the dangerous level of a cyber-attack, especially in SQL injection attacks and 
cross-site scripting attacks.

The paper is organized into the following section. Section 2 discussed the material and 
methodology of the CVSS method and its implementation on level attack scoring. Section 
3 discussed the result and evaluation of level attack scoring CVSS on SQL injection and 
cross-site scripting attacks. Finally, we wind up in Section 4 with the conclusion of our 
research.

MATERIAL 

Related Works

Common Vulnerability Scoring System. Common Vulnerability Scoring System is a 
system for conducting a quantitative assessment of a vulnerability by Common Weakness 
Enumeration, giving metrics to the properties of a vulnerability built and maintained by 
the Forum of Incident Response (Scarfone & Mell, 2009). Quantitative assessments are 
calculated based on formulas that depend on several metrics representing the ease of 
exploitation, the impact of mitigation, and the way the vulnerability is spread (Houmb et 
al., 2010b, 2010a). Quantitative assessment can be represented qualitatively (Low, Medium, 
High, and Critical) to help the organization assess and prioritize changes to their system.

CVSS has also become a standard system used by many agencies and companies. This 
research uses CVSS 3.0 version (Gallon & Bascou, 2011b; Houmb & Franqueira, 2009). 
CVSSv3 has three main metrics as follows:

(1) Base Metrics
This metric describes the vulnerability’s characteristics and traits. This metric 
consists of the following:
(a) Exploitability Metrics

Metrics that represent the characteristics of a security hole, where vulnerable 
components will be given a score based on indications of a security hole 
that leads to the success of an attack. Exploitability metrics consist of Attack 
Vector (AV), Attack Complexity (AC), Privilege Required (PR), and User 
Interaction (UI).

(b) Scope
Scope metric (S) represents the scope of the impact of the security gap. Does 
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the security gap provide an opportunity for attackers to get coverage of access 
rights regulated by other access rights coverage. For example, the attacker can 
access and perform activities on the host OS by attacking VMware.

(c) Impact Metrics
Metrics that represent the impact of Vulnerability on the CIA triad 
(Confidentiality, Integrity, and Availability) of an infrastructure.

(2) Temporal Metrics
This metric reviews the current conditions based on exploitation techniques, the 
certainty of information about exploitation codes, or whether a solution is offered 
to correct the security hole itself.

(3) Environmental Metrics
This metric allows users or analysts to adjust Base Metrics to the organizational 
needs of the user itself, which will later be applied to the organization’s 
infrastructure in terms of place security controls or CIA triads (Confidentiality, 
Integrity, and Availability).

This research uses Exploitability metrics, Scope metrics, and Impact metrics.

METHODOLOGY

The steps of this research methodology have been prepared and executed by processing 
the data in the National Vulnerability Database (NVD) and SQL Injection attack data and 
cross-site scripting. The following are the detailed steps of this research methodology:

(1) Data Pre-processing
(a) Standard Deviation of CVSS for Constant Variable
(b) CVSS Calculation Simulation on Injection Attacks

(2) Analysis & Design CVSS Formulation
(a) Dynamic CVSS Vector Calculation
(b) CVSS Base Score Calculation

(3) Algorithm Implementation
(4) Evaluation

Data Pre-Processing

Standard Deviation of CVSS for Constant Variable. NVD data is downloaded and 
updated periodically to perform a static calculation of scores of multiple CVSS vectors. 
The data is then used to determine the majority score of each vector generally assigned to a 
type of attack. Based on the calculation of standard error and standard deviation of the two 
types of attacks on NVD data, the following results were obtained in Tables 1 and 2. SQL 
Injection and Cross-site Scripting attacks have very low standard deviation and standard 
errors; These observations indicate that NVD data has a low variation. Therefore, by using 
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the majority value of each vector in the NVD data (the score of each vector is determined 
based on the highest score on the NVD data for each vector), the score for each vector in 
the newly detected attack can be determined only based on the type of attack detected.

Table 1 
Results of SQL injection statistical calculations on 
NVD dataset (as of 23 March 2020)

Vector stderr mean std
AV 0.000795 0.847520 0.029299
AC 0.001051 0.765386 0.038760
PR 0.004775 0.748227 0.176041
UI 0.000608 0.847800 0.022396
S 0.001040 1.001472 0.038348
C 0.555629 0.555629 0.067088
I 0.003348 0.587947 0.123428
A 0.003630 0.598764 0.133822

Table 2 
Results of XSS injection statistical calculations on 
NVD dataset (as of 23 March 2020)

Vector Stderr Mean std
AV 0.000145 0.849619 0.010214
AC 0.000281 0.768804 0.019834
PR 0.001666 0.764082 0.117414
UI 0.000273 0.621621 0.019243
S 0.001485 1.988925 0.104665
C 0.000754 0.225554 0.053156
I 0.000638 0.224591 0.044990
A 0.000668 0.995276 0.047085

CVSS Calculation Simulation on Injection Attacks. This research uses eight field 
parameter that showed in Table 3 as follow:

• URL: URL string read from the Apache engine.
• body: Name and parameter value that will be checked whether there is a string 

injection pattern or not
• source_address: The attacker’s IP address
• has_sql: Did the request trigger a connection to the database
• source_port: The attacker’s (inbound) port number
• arrived_at: Time the request was received
• audit_xss: XSS detection result data by SIEM
• inspect_sqli: Data from SIEM’s SQL Injection detection results

Table 3 
Data logs generated for SQL injection attacks

Attribute Value
url http://server.com/products.php?id=1’ OR 1=1-- -
body id=1’ OR 1=1-- - 
source_address 115.166.114.89 
source_port 33527 
has_sql true 
arrived_at 2021-04-21T13:24:22+00:00 
audit_xss Not Detected 
inspect_sqli Detected 
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Table 4 
SQL injection NVD scores

SQL
Score AV AC PR UI S C I A
0 12 101 129
00.02 1
00.22 33 19 12
00.27 120
00.44 19
00.05 0
00.55 6
00.56 1314 1239 1218
0,043 4 298 13
0,047 1
0,053 1340
0,059 1348 940 1346
C 2
U 1357

The measurement variables contained in CVSS will be calculated statically and 
dynamically. Static calculations will be carried out to obtain PR (Privileges Required) 
vectors, AC (Attack Complexity), UI (User Interaction), S (Scope), C (Confidentiality), 
I (Integrity), and A (Availability) based on CVSSv3 data NVD published regularly. 
Meanwhile, a dynamic calculation will be carried out to get a vector score of AV (Attack 
Vector).

NVD data will be retrieved periodically to ensure the data used in the static calculation 
is the most up to date. The next step is that the system will filter the data for attacks that 
are out of context, leaving only NVD data for SQL Injection and Cross-site Scripting. 
Furthermore, from the log data provided by SIEM, it is known that the attack that occurred 
on the HTTP Request was a SQL Injection attack or Cross-site Scripting. Therefore, the 
NVD data used is SQL Injection attack data, as shown in Table 4. The NVD data used in 
this simulation is from 2017 to 2019, taken on 23 March 2020.

The value of each metric is taken based on the majority score for the attacks identified 
by SIEM. Based on the table, for example, it can be determined that the value for the AC 
metric in this HTTP Request is 0.77 because it is the majority value (1340 data on NVD 
shows SQL Injection attacks have an AC score of 0.77). The calculation results show the 
scores assigned to each CVSS vector on this HTTP as follows:

• AC: 0.77 (Low)
• PR: 0.85 (None)
• UI: 085 (None)
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• S: Unchanged (U)
• C: 0.56 (High)
• I: 0.56 (High)
• A: 0.56 (High)

Analysis and Design CVSS Applied Formulation

Dynamic CVSS Vector Calculation. From the log data provided by SIEM, the attacker’s 
IP is 115.166.114.89. Then, to perform AV calculations, the system needs to get the IP 
of the server it wants to protect (Host IP). Host IP can be retrieved automatically via the 
ipconfig command, which is run automatically or set manually by the administrator. As 
a simulation, it is assumed that the Host IP is 10.20.20.122 with a subnet of 255.255.0.0. 
Next, the system performs a subnet calculation against the Host IP to determine whether 
the attacker’s IP is on the same subnet as the Host, with the following calculation in Table 
5. From the results of these calculations, the attacker’s IP (115.166.114.89) is on a different 
subnet from the Host’s IP (10.20.20.122), where only IPs are in the range 10.20.0.1 to 
10.20.255.254 are on that subnet. Because the two IPs are on different subnets, it can be 
concluded that the AV from the attack was Network with a score of 0.85.

Table 5 
Subnet calculation results based on host IP

IP Address: 10.20.20.122 
Network Address: 10.20.0.0 
Usable Host IP Range: 10.20.0.1 - 10.20.255.254
Broadcast Address: 10.20.255.255 
Total Number of Hosts: 65,536 
Number of Usable Hosts 65,534 
Subnet Mask: 255.255.0.0 
Wildcard Mask: 0.0.255.255 

Base Score CVSS Calculation. From the results of these calculations, the CVSS Vector 
String is obtained as follows:

CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

To determine the CVSS Base Score from this HTTP Request, the Exploitability Score 
and Impact Score were calculated; because the scope of this attack is Unchanged, the CVSS 
calculation formula used is Equation 1:
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Based on this formula, the Exploitability Score is calculated as Equation 2:
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Next, the Impact Score is calculated by calculating the Impact Sub Score (ISS) first, as Equation 3: 

𝐼𝐼𝐼𝐼𝐼𝐼 = 1 − �(1 − 0.56) × (1 − 0.56) × (1 − 0.56)� = 0.914                                     (3) 
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From the calculation of the score is 9.8, it can be concluded that the severity level of the 
attack is Critical.

Algorithm Implementation

The implementation of this algorithm uses several server technologies, including Apache 
Server, Nginx, Redis, Elastic Kibana, and Logstash. The system diagram in Figure 1 
illustrates the workflow of the system built in this study. Overall, there are five types of 
flow or data flow between modules, namely: initial flow, return flow, process flow, periodic 
flow, and concurrent flow, that described in Table 6.

The HTTP Sniffer module catches every HTTP packet that the system receives from 
the client, i.e., an HTTP request packet, when it is forwarded to the web server service 
(e.g., Apache, Nginx, among others). The HTTP Sniffer module normalizes the captured 
packets and sends them to the SQLi Feature Selector module for further processing. In 
addition, normalized HTTP packets are also sent to be stored on the Redis server, which 
is an in-memory data storage available in the system. This storage is done so that HTTP 
packets are still available and can be used in subsequent processes and so that they can 
be retrieved quickly. In the SQLi Feature Selector module, the input data received from 
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the user, whether it contains SQL syntax or not, is generalized into a token. The goal is 
to reduce the data’s very high dimensionality or diversity to a simpler form. The results 
of the processing are then sent to the Audit Control module. From there, all received data 
will be used to detect SQLI and XSS attacks.

Table 6 
Data flow type description

Flow Type Description Example
Initial Flow Occurs when a request comes from a client until 

before the response is returned
HTTP Request Packet Data

Return Flow Occurs when a response has been received from 
client, processed, and returned to the client

HTTP Response Packet Data

Process Flow Executed specifically by a module when all 
information needs have been met and are ready to be 
processed. It is on the fly and not tied to the initial 
flow or return flow

Data from the Redis server to 
the Audit Control module

Periodic Flow Data flow is carried out periodically
within a certain time

Data from Elastic Search to 
Kibana module

Concurrent Flow The data flow always runs at any time, does not 
depend on a particular condition, and is not bound to 
other flows

Data from Filebeat and 
Auditbeat to Logstash

Figure 1. Inflow and outflow data traffic on system
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After the request from the client is processed by the web server and the response is 
sent back to the client in the form of an HTTP response packet, the packet is again captured 
by the HTTP Sniffer module and then forwarded to the Audit Control module along with 
the query result data from MySQL for XSS Auditing. The process results are returned to 
Audit Control and then sent to the Logstash server, which is also available in the system. 
Logstash servers receive, parse, and process information from various sources and then 
send it to the Elasticsearch servers as long-term storage.

Evaluation

Evaluation of the algorithm implementation uses a series of test procedures conducted 
against a server that runs a vulnerable web application.

RESULT 

Result of Experiment

This research uses data feeds from the National Vulnerability Database (NVD) in 2017, 
2018, and 2019. The table structure in the NVD will take the following data:

(1) CVE: CVE data has a \textbf{problemtype} column that has a CWE classification 
value

(2) Configuration: This section has the effect of weakness on the system
(3) Impact: This section has valuable information from CVSS
(4) Published Date: Publish date for a CVE record
(5) Last Modified: The last modified date for a CVE record
CWEs and CVEs data are important in assessing a software’s vulnerability, and it 

provides an easy reference to understand existing vulnerabilities, which can ease software 
quality testing. Therefore, this research uses CWE as part of the classification of injection 
attacks. The CWE identifier is CWE-89 for SQL injection attacks and CWE-1033 for 
cross-site scripting injection attacks.

JSON data feeds from NVD and CVE have inconsistent scores, which can be seen in 
Figures 2, 3, and 4. Therefore, this research tries to find the congruence of each CVSS by 
using Equation 6:

𝐼𝐼 =  �
𝐼𝐼𝐸𝐸𝑅𝑅𝐵𝐵(𝐸𝐸)

𝐸𝐸

∞

𝑅𝑅=1
        (6)

Where:
t = Each Vector’s Possible values (Such as N, L, A, P for Attack Vector)
y = The total data gathered for such a vector.
c = Congruence
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The calculation results of the above formula can be seen in Table 7. This research does 
not use the Attack Vector (AV) parameter in the calculation results because this parameter 
becomes invalid. After all, the attack surface can be accessed by hackers in a network 
interface protocol. Therefore, to check an attacker’s IP address, whether it is still in one 
subnet or not, with the following algorithm:

Algorithm 1: AV String Vector Generation Algorithm
Result: Attack Vector (Network / Adjacent)
let compare = getInputIP() ;
let localip.prefix = getNetworkInterfaceInfo(); 
let subnets = GenerateSubnet(localip.prefix);
procedure findMatchingSubnet(ip)
for (subnet in subnets) do
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Figure 4. SQL injection CVSS3 scores in 2017

Figure 2. SQL injection CVSS3 scores in 2019 Figure 3. SQL injection CVSS3 scores in 2018

Table 7 
Congruence values of CVE

Parameter SQL      XSS        
AV       99.3\%(N) 99.8\%(N)  
AC       98.7\%(L)  99.6\%(L)  
PR       73.0\%(N) 60.56\%(N) 
UI       98.8\%(N) 99.2\%(R)  
S        100\%(U) 98.8\%(C)  
C        97.8\%(H) 98.7\%(L)  
I        92.6\%(H) 98.8\%(L)  
A        91.9\%(H) 98.9\%(N)  
Total    985 CVEs 4681 CVEs  
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if IP is in the subnet, then
return subnet

else
return -1

end
end
if findMatchingSubnet(localip) is equal to findMatchingSubnet(compare) then

return “A”;
else

return “N”;
end

The Privileged Require (PR) vector is the lowest vector of all existing CVSS vectors. 
This vector can be assessed manually using the Principle of Least Privilege method, which 
uses restrictions on access to user roles or privileges.

Detection of user privileges, in general, can use the Cookies variable. This method 
is effective when the attacker is using a browser. Cookies have an interesting section 
containing a URL Path that can indicate the user’s access rights. The Path variable contains 
information about where Cookie headers can be sent for authentication from the server.

This research uses the Path URL Cookies Header to identify whether an attacker has 
fully gained access to a specific Path. Since the Cookies header was sent to a specified 
path, we can conclude that if the attacker managed to access the specified path without 
generating an HTTP error, the attacker has essentially gained the privilege to access that 
Path and retrieved the server’s corresponding resources. It can be done without forcefully 
checking the Cookie header from the incoming Request.

The privileges declared can vary; however, the Super User is one absolute privilege. 
Like the Linux counterpart, a superuser is allowed to execute any command in the server, 
giving them the highest level of privilege. If that is the case, the PR would be scored as 
“H” or High since the attacker has gained the highest privilege within the web server. Other 
privileges specified within the URL are relative to the use.

DISCUSSION

In this study, we used many log entries considered malicious and detected by the IDS or 
SIEM system. This study develops a log parser tool to convert logs from the detection 
system into a file with a .csv extension. The output taken from the log is IP Address; URL; 
Score; Vector String.

We would also use VSS, a Python library, to calculate the CVSS3.0 score. The script 
that implements the library takes an input of a CVSS:3.0 vector string and prints out the 
generated CVSS3.0 score.
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Table 7 shows the results of the testing procedure. It all comprised SQL Injection 
attempts toward a victim web server located at 172.17.0.2 with a prefix of 16.

We can see from the table below that the score changes corresponding to the URL and 
IP parameter given.

There are a few things to take note of:
(a) We omit the queries of the URL string to shorten the sentence length in this paper.
(b) We omit the request method.
The following are the explanations of each row of the result table.
(1) In this case, the SIEM System recorded an attack in the first row with the following 

data.
(a) IP: 171.25.193.77
(b) URL: /
(c) Timestamp: 1564284545
(d) Is a threat: yes
(e) SQLi type: tautology

Since the attacker is located outside the system’s subnet, it is classified as a remote 
attack. The URL appears to be a non-privileged URL based on the configuration.

So, from there, the dynamically designed vector, which consists of AV and PR, would 
be scored N and N, respectively.

Since the vulnerability is classified as SQL Injection, the predetermined values would 
be C:H/I:H/A:H/UI:N/S:U/AC:L. Thus, the final CVSS vector string would be C:H/
I:H/A:H/AV:N/UI:N/S:U/PR:N/AC:L, which is scored as 9.8 according to CVSS:3.0.

(2) In the second row, the SIEM System recorded an attack with the following data 
in this case.
(a) IP: 171.25.193.235
(b) URL: /index
(c) Timestamp: 1564284545
(d) Is a threat: yes
(e) SQLi type: tautology

This row is very similar to the first row. The attacker is outside of the subnet the machine 
is in and has a URL with no privilege.

(3) In the third row, the SIEM System recorded an attack with the following data in 
this case.
(a) IP: 172.17.0.9
(b) URL: /2006
(c) Timestamp: 1564284548
(d) Is a threat: yes
(e) SQLi type: tautology
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This row features an adjacent attacker with an IP of 172.17.0.9, which would modify 
the Attack Vector into A or Adjacent. Other than that, it is still the same as the previous row 
with a vector string of C:H/I:H/A:H/ AV:A/UI:N/S:U/PR:N/AC:L and a score of 8.8.

(4) In this case, the SIEM System recorded an attack in the fourth row with the 
following data.
(a) IP: 172.25.193.20
(b) URL: /crack
(c) Timestamp: 1564284548
(d) Is a threat: yes
(e) SQLi type: tautology

This row features an attack with a URL specified as having high privilege, which would 
modify the Privilege Required vector into H or Adjacent. Other than that, it is still the 
same as the previous row with a vector string of C:H/I:H/A:H/ AV:A/UI:N/S:U/PR:H/
AC:L and a score of 7.2.

Table 8 
Automatic summarizing (Victim IP is 172.17.0.2)

IP 
URL
timestamp
category
class

Vector Score

171.25.193.77
/
1564284545
threat
tautology

C:H/I:H/A:H/AV:N/UI:N/S:U/PR:N/AC:L/ 9.8

171.25.193.235
/index
1564284545
threat
tautology

C:H/I:H/A:H/AV:N/UI:N/S:U/PR:N/AC:L/ 9.8

172.17.0.9
/2006
1564284548
threat
tautology

C:H/I:H/A:H/AV:A/UI:N/S:U/PR:N/AC:L/ 8.8

171.25.193.20
/crack
1564284549
threat
tautology

C:H/I:H/A:H/AV:N/UI:N/S:U/PR:H/AC:L/ 7.2
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EVALUATION

A series of test procedures were conducted against a server that runs a vulnerable web 
application to evaluate the overall performance of the methods. The server was assigned 
10.20.153.52/20 as the IP address. Note that the /20 CIDR notation indicates that the IP is 
a Class C. The first test procedure involves a potential Cross-site scripting attack that has 
been detected, and the detection data is fed to the system. The data is shown in Figure 6.

After the summarizing process, data that indicates the severity measurement result 
(Figure 6, is emitted by the system. From the data, it can be concluded that the attack has 
a severity score of 6.1, denoted medium severity, with a likelihood percentage of 94%. 
The data also shows the vector string of the attack, which is very helpful for a vulnerability 
assessment and incident report.

The attack is analyzed based on the CWE tag. The IP and server prefix (CIDR) are 
obtained, then the system detects that the attack can be categorized as a Network Attack. 
P_ERRORS attribute in the output data indicates that the endpoint URL does not exist in 
the database. Hence, the system directly inserts the URL into the database so that future 
detections involving the same attack and endpoint will use the measured severity as 
precedence.

Figure 5. Data input for cross-site scripting testing Figure 6. Data output for cross-site scripting testing

Same for the SQL Injection attack 
testing, the detection data (Figure 7, is fed 
to the system to be analyzed.

After the summarizing process, data in 
Figure 8, is emitted. From the data, it can be 
concluded that the attack also has a severity 
score of 6.1, denoted medium severity, with 
a likelihood percentage of 94%.

The system measures an attack with 
SQL Injection payload (CWE-89 based on 
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Figure 7. Data input for SQL injection testing

Table 9 
Accuracy percentage of SQL injection and cross-site scripting

Attack Type String Accuracy % Score Accuracy %
SQL Injection 62,61957321559971 62,61957321559971
Cross-site Scripting 59,30326218284333 59,28312525171164

Figure 8. Data output for SQL injection testing

Table 10 
Common error cause breakdown for SQL injection and cross-site scripting

Attack Type
Common Error Cause

AV AC PR UI S C I A
SQL Injection 7 19 419 13 2 45 120 7
Cross-site Scripting 4 18 1964 35 55 63 58 4

tag classification). The IP source of the attack indicates that the attack was carried out from 
a machine under the same network. Hence, the attack is categorized as an Adjacent attack.

Overall, 1359 SQL Injection and 4966 Cross-site Scripting attack simulations are 
conducted against the system. The accuracy of the automatic measurement is calculated, 
with human-assessed severity as the ground truth. The result is shown in Table 9.

Apart from the accuracy measurement, 
the common error cause is also measured for 
every vulnerability metric on SQL Injection 
and Cross-site Scripting attack data. The 
result is shown in Table 10. The common 
error cause illustrates the amount of attack 
data for each metric that are incongruent 
with the rest of the data.
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CONCLUSION

In this paper, the author designed a novel system to automate the calculation of CVSSv3.0 
scores on SQL Injection and XSS vulnerabilities based on data from NVD and network 
logs. Dynamic analysis can be performed on AV Vector (Attack Vector) metric, while the 
PR (Privilege Required) metric is shown to be able to be calculated pseudo-dynamically, 
with a note that the accuracy rate is 59.28% for Cross-site Scripting attacks, and 62.62% for 
SQL Injection attack. For other vectors, the data from NVD has a high enough congruence 
that can be used as an element of static calculations.

Although, the authors have to admit that the methods we suggested are hardly 
flawless since it relies on the congruence of currently existing vector strings in NVD. 
If, in any case, the NVD data feeds become highly incongruent, then this paper becomes 
deprecated. Another point we should mention is that perhaps further research is required 
in detecting privilege. Since what we propose perhaps is effective, it is slightly hard 
coded. Though now it is statistically proven that a vulnerability’s base vectors, most of 
the time, do have similar values, disregarding the software it is exploited in. Finally, the 
author suggests further researchers examine data from other sources, such as the Open 
Source Vulnerability Database (OSVDB) (Kouns, 2008), and extensively test the theory 
used in this paper.
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